
Supplementary	  Table	  1.	  SV	  breakpoint	  calling	  results	  from	  the	  top	  performers	  in	  the	  ICGC-‐TCGA	  DREAM	  8.5	  Somatic	  Mutation	  Calling	  Challenge	  subchallenges	  in	  silico	  datasets	  1,	  2,	  3	  and	  4.
Synthetic	  datasets Mutation	  types Purity Subclones Top	  performers Sensitivity/Precision Balanced	  accuracy
in	  silico	  1 SNV	  &	  SV(deletions,	  duplications,	  inversions) 100% N/A Delly 0.841/0.987 0.914

Manta 0.822/0.987 0.905
Meerkat 0.838/0.931 0.885
novoBreak 0.811/0.932 0.872

in	  silico	  2 SNV	  &	  SV	  (deletions,	  duplications,	  inversions,	  insertions) 80% N/A novoBreak 0.794/0.983 0.888
Manta 0.754/0.984 0.869
Delly 0.739/0.980 0.859

in	  silico	  3 SNV	  &	  SV	  (deletions,	  duplications,	  inversions,	  insertions)	  &	  INDEL 100% 50%,	  33%,	  20% novoBreak 0.801/0.984 0.892
Manta 0.768/0.989 0.879
Delly 0.783/0.972 0.878

in	  silico	  4 SNV	  &	  SV	  (deletions,	  duplications,	  inversions)	  &	  INDEL 80% 50%,	  35% novoBreak 0.849/0.990 0.920
Grigoriev_lab 0.853/0.985 0.919
CASbreak 0.810/0.994 0.902



Supplementary	  Table	  2.INDEL	  calling	  results	  from	  the	  top	  performers	  in	  the	  ICGC-‐TCGA	  DREAM	  8.5	  Somatic	  Mutation	  Calling	  Challenge	  subchallenges	  in	  silico	  datasets	  3	  and	  4.
Synthetic	  datasets Mutation	  types Purity Subclones Top	  performers Sensitivity/Precision Balanced	  accuracy
in	  silico	  3 SNV	  &	  SV	  (deletions,	  duplications,	  inversions,	  insertions)	  &	  INDEL 100% 50%,	  33%,	  20% Pindel 0.875/0.976 0.926

novoBreak-‐indel 0.746/0.908 0.827
Manta 0.623/0.940 0.781

in	  silico	  4 SNV	  &	  SV	  (deletions,	  duplications,	  inversions)	  &	  INDEL 80% 50%,	  35% novoBreak-‐indel 0.788/0.928 0.858
EmToo_Broad 0.772/0.921 0.846

AstraZeneca_VarDict 0.750/0.835 0.793



Supplementary	  Table	  6.	  Summary	  of	  novoBreak	  calls	  from	  the	  whole-‐
genome	  sequencing	  data	  of	  22	  Breast	  Cancer	  patients	  from	  TCGA.

sample #filtered_calls DEL DUP INV TRA
TCGA-‐A1-‐A0SM 111 19 16 27 49
TCGA-‐A2-‐A04P 801 68 105 402 226
TCGA-‐A2-‐A0D1 252 57 35 88 72
TCGA-‐A2-‐A0D4 211 34 42 72 63
TCGA-‐A2-‐A0YG 209 40 52 76 41
TCGA-‐A2-‐A25B 453 73 185 84 111
TCGA-‐A8-‐A08B 945 72 71 685 117
TCGA-‐A8-‐A08L 320 201 21 41 57
TCGA-‐A8-‐A08S 173 42 13 71 47
TCGA-‐A8-‐A092 44 17 7 9 11
TCGA-‐A8-‐A09I 394 119 83 142 50
TCGA-‐A8-‐A09X 82 13 10 13 46
TCGA-‐AN-‐A04D 172 98 14 12 48
TCGA-‐AN-‐A0AT 647 93 350 36 168
TCGA-‐AO-‐A0JM 301 48 35 120 98
TCGA-‐AO-‐A124 747 170 351 50 176
TCGA-‐AR-‐A0TX 331 56 41 80 154
TCGA-‐AR-‐A24Z 625 113 114 208 190
TCGA-‐AR-‐A256 638 254 154 78 152
TCGA-‐BH-‐A0H0 56 8 7 12 29
TCGA-‐BH-‐A0H6 65 6 6 11 42
TCGA-‐E2-‐A152 92 27 12 18 35



Supplementary Note 1 Evaluation of k-mer size, minimal count, low-quality 
base trimming and error correction on the performance of novoBreak 
 
 
We tested the performance of novoBreak under a range of k-mer sizes, minimal 
k-mer count, with and without trimming low-quality read ends, and with and 
without correcting errors using the DREAM in silico 2 (IS2) data. We recorded the 
sensitivity, peak memory consumption and runtime under different settings. 
Because the insertions simulated in IS2 are template insertions, which may 
introduce confusions in evaluation, we excluded them from these experiments 
and performed evaluation based on deletions (DELs), inversions (INVs) and 
duplications (DUPs). The k-mer size and the minimal k-mer count are parameters 
of novoBreak, which can be easily set on the command lines. We modified the 
source code to generate a version of novoBreak that does not trim low-quality 
ends and a version that does not correct errors in BAM files. Below are the 
results from these settings: 
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Note that these experiments were performed using a network-based storage 
cluster with relatively slower IO operations than using a standard storage. 
Therefore, the reported runtimes were bigger than what one might observe when 
using standard hardware. However, these differences do not affect the fairness 
of our comparison. From this result, it is clear that choosing different k-mer size 
had little effect on the sensitivity. The sensitivity from a smaller k-mer size was 
only slightly lower than those from larger k-mer sizes because junction 
sequences in these sizes appeared largely unique in the reference genome. 
Setting the minimal k-mer count at 1 retained lots of sequencing errors, which 
caused novoBreak to run out of memory. Setting minimal K-mer count at 2 
resulted in a slightly better sensitivity at the cost of more memory and ~25% 
more runtime than setting minimal k-mer count at 3. Trimming low-quality ends or 
correcting errors had almost no effect on the sensitivity, but the peak memory 
consumptions and runtimes were notably increased when these operations were 
not performed. To achieve a balanced performance across sensitivity, peak 
memory and runtime and to optimize implementation, we chose 3 as the minimal 
k-mer count and 31 as the k-mer size and implemented the low-quality end 
trimming and error correction for the default setting of novoBreak.  



Supplementary Note 2 Assembly and alignment tools used in novoBreak 
 
The default assembler used in novoBreak is SSAKE1 and the default aligner is 
BWA-MEM2. During the development of novoBreak, we tested quite a few 
assemblers and aligners. For assemblers, we tested SOAPdenovo3, velvet4, 
phrap5, CAP36, SGA7, celera8, SSAKE1 and our own assemblers. For aligners, 
we tested BWA-SW9, BWA-MEM2, BLAT10, LAST11, LASTZ12 and BLASTZ13. For 
the aligners, we tested them under the default settings. But for the assemblers, 
we tried quite a few settings based on the documentations and our 
understanding of the algorithms. For example, for the de Bruijn graph assemblers, 
we tested a range of k-mers to get the optimal assembly results. In the end, we 
found BWA-MEM and SSAKE were the best choices in achieving a high 
balanced accuracy. As the reads become longer and more accurate, other 
aligners or assemblers may become better choices. The modular design of 
novoBreak makes it easy to swap in alternative aligners or assemblers into 
novoBreak workflow. Thus, improvement of novoBreak can be relatively easily 
achieved in the future versions.   



Supplementary Note 3 novoBreak performance in low coverage regions 
 
In the DREAM challenge in silico 3 (IS3) data, the average read depth is about 
40X. There are 79 unique true positive calls detected by novoBreak but neither 
discovered by DELLY nor Manta. Sixty-six (83.5%) of the 79 calls are covered by 
less than 40 reads, 50 (63.2%) are covered by less than 30 reads, and 23 
(29.1%) are covered by less than 20 reads. A comparison of the coverage of 
these SV regions between the tumor and the normal genomes shows that there 
is significantly less coverage (mean 27.9X) in the tumor genome than in the 
normal genome (mean 33.5X) (P-value = 0.0037 by Student’s T-test). A further 
look of the BWA alignment shows that 69 (87.3%) of the calls are not supported 
by any split read, 5 (6.3%) by only 1 split read. Only 5 (6.3%) are supported by 
more than 1 split read. Additionally, no discordant read pairs are found in 69 
(87.3%) of the 79 calls.  These statistics indicate that lack of coverage is the 
reason why DELLY and Manta failed to detect SVs in these regions. 
 
  



Supplementary Note 4 Evaluation of novoBreak using data from a patient 
with low-grade glioma 
 
 We also benchmarked novoBreak on data produced from a low-grade glioma 
(LGG) patient (SJLGG039)14. Nineteen (19) SVs have been previously 
discovered and experimentally validated in this patient using whole genome 
sequencing (analyzed using CREST15) and whole transcriptome sequencing 
data (analyzed using deFuse16). We downloaded the BAM files containing the 
only whole genome sequencing data from the European Bioinformatics Institute 
(accession id: EGAS00001000255). Under the standard setting applied to 
analyze the DREAM challenge, TCGA and the COLO829 data, novoBreak 
detected only 5 of the 19 SVs.  However, this can be explained by a potential 
lack of purity of the tumor data. We noticed that 31 out of the 38 expected 
breakpoints (81.6%) had 3 or fewer supporting reads (mutA and mutB columns 
in Supplementary table 714), which were considerably less than what would be 
expected from a genome of 45X average coverage, Thus, we adjusted the last 
quality-control step of novoBreak and filtered the raw calls using a less stringent 
filter (released in novoBreak v1.1.3rc).  We were able to identify 16/19 (84.2%) 
of the SVs, as summarized in the following table. 

 
Sample ChrA PosA Orient_A ChrB PosB Orient_B Type CREST novoBreak 
SJLGG039 1 3643330 - 11 115411715 + CTX NO NO 
SJLGG039 1 3643581 + 11 69538645 + CTX YES YES 
SJLGG039 1 3649438 + 22 47557135 - CTX YES YES 
SJLGG039 1 12582471 + 12 103110023 + CTX YES YES 
SJLGG039 1 12584121 + 11 118491727 - CTX YES YES 
SJLGG039 3 12649234 + 3 46001511 + DEL NO NO 
SJLGG039 3 49168971 + 11 66966686 + CTX NO YES 
SJLGG039 3 186716601 + 4 1899271 + CTX YES YES 
SJLGG039 4 5039611 + 3 183723574 + CTX NO YES 
SJLGG039 7 9539557 + 7 6300098 + INS YES YES 
SJLGG039 10 98887882 + 16 2158836 + CTX NO YES 
SJLGG039 11 69540077 + 1 9555182 + CTX NO NO 
SJLGG039 11 69541460 + 12 103111315 + CTX YES YES 
SJLGG039 12 103110079 - 10 95588803 + CTX YES YES 
SJLGG039 12 103112184 + 3 9662023 + CTX NO YES 
SJLGG039 12 106295961 + 1 12581667 + CTX YES YES 
SJLGG039 16 410315 - 4 5037703 + CTX NO YES 
SJLGG039 16 2170637 + 12 103110956 - CTX NO YES 
SJLGG039 16 2172065 + 1 1196437 + CTX YES YES 

 
 For comparison, we also ran CREST (under default settings) on the downloaded 

BAM files. Among the 19 validated SVs, CREST detected 10 (52.6%). In our 
further investigation, we found that 3 breakpoints (chr1:3643330, 
chr11:115411715 and chr3:46001511) that novoBreak missed were in the 
unfiltered results (very low-confidence). The remaining breakpoints had neither 
discordant read pairs nor split reads in the downloaded BAM files supporting 
their presence (they were also missed by CREST). This suggested that they 
were likely detected in the whole transcriptome sequencing data and therefore 
should not be regarded as false negatives of novoBreak or CREST. 

 
 

https://www.ebi.ac.uk/ega/studies/EGAS00001000255
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